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1 Abstract

This project is an introduction to solving the convection-diffusion equation by utiliz-

ing the Finite Element Method (FEM) and the partial differential equation solving soft-

ware FreeFem++. Applications of the convection-diffusion model to simulating airborne

and water- borne pollutant dispersal are the subject of ongoing research and are prevalent

in the supporting literature. Pollutant dispersion models help environmental authorities

properly employ regulations to stave off potential disasters, and provide real-time decision

support when severe environmental impacts occur. This project examines the derivation

of the convection-diffusion equation’s weak formulation and incorporates the basics of the

finite element method. This includes defining the spatial domain’s mesh, defining the FEM

space, and providing both the semi and fully discretized equations respectively. FreeFem++

is thereby utilized to numerically solve the convection-diffusion equation via its weak for-

mulation and visually outputs the resulting dispersion behaviors of particle concentrations

through processes of pure diffusion and low/moderate convection-diffusion.
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2 Introduction

The convection-diffusion equation describes the physical processes of particle dispersion

and is well known for its applications involving atmospheric, oceanic, and watershed/river

system pollution modeling. There are multiple techniques used to obtain high-resolution

solutions to these particular type of partial differential equation models including the finite

difference, finite volume, and finite element methods. The finite element method is a rel-

atively newer methodology in comparison to its counterparts, but it is often preferred for

modeling more realistic pollution impact scenarios due to its ability to handle non-geometric,

unstructured, and adaptive meshes. The adaptive techniques of the finite element method are

often utilized in real-world applications because they often provide high resolution solutions

while maintaining or lowering computational time/cost.

2.1 Problem Statement

This research will primarily focus on the basic convection-diffusion equation and its

application to atmospheric pollution though the utilization of the finite element method

(FEM) and the partial differential equation solving software FreeFEM++. The objective

being to create a time-dependent model of the convection-diffusion equation with a con-

centration of pollutant specie (in the form of smoke) emitting from a singular source from

which the pollutant is thereby dispersed within a finite space through the natural process of

low/moderate convection-diffusion over a short duration.
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2.2 Literature Review

Literature surrounding the topic of convection-diffusion based pollution models con-

sists of increasingly complicated variations of partial differential equations characterizing

specific attributes of mass transportation models that more realistically predict the phys-

ical process of pollution dispersion. In order to better grasp a more comprehensive un-

derstanding of the background information surrounding the applications of modeling the

convection-diffusion equation to pollution modeling, parabolic equations such as the diffu-

sion, convection-diffusion, and heat equations as presented in [Myint-U], [Betounes], and

[Burnett] should be studied extensively. In addition, in [Johnson] and [Schwarz] by Johnson

and Schwarz, the basic components of the finite element method including the construction

of the mesh, finite element space, and the subdivision (partitioning/triangulation) of the

domain can be quickly referenced.

Moreover, to use the variational formulation in conjunction with high-level programming

languages, the derivation of said weak formulation should be examined in full detail to gain

insight into the mathematical foundations of FEM. Photochemical models are considerably

more involved than the basic convection-diffusion model and their concentration gradients

take into account the chemical properties of particular pollutant species of interest as in

[Kach], [Mont], [Pochai] and [Sanin]. However, many such as Pai [Pai] chose to simplify

their model with the assumption of passive (non-reactive) contaminants, exemplifying the

classic dispersion model. Ferragut [Ferragut] whom like Pai chose to assume non-reactivity,

insisted that although he negates the chemical properties of reactive agents, models with

these included chemical properties could promptly be generalized regardless.

The equations for voracity and the stream-function present in Pochai’s article [Pochai]

create the basis for a mass transportation model that more accurately depicts the physical

process of smoke plume distribution/dissipation in the (lower atmosphere) Troposphere and

the application of wind fields are indispensable for accurately simulating the atmospheric

turbulence characteristically dominating the convection-based transport of air pollutants.

Realistic data for wind fields are crucial for achieving the level of accuracy required to lend
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real-time decision making support to environmental regulators/authorities and this data is

collected in a multitude of ways. For more information pertaining to the wind field approach

refer to [Sanin]. Some of the ways in which naturalistic data is obtained include research

from wind tunnel experiments and/or observational data obtained from multi-locational me-

teorological sites as in [Pai] where Pai confirms the occurrence of what is known as plume

lift off, which transpires when emission sources are oriented closer to the ground.

The Eulerian model employed in [Ferragut] utilizes meteorological wind fields rather than

simulating the trajectory of individual particles to describe convection-diffusion. However,

the limitations of Eulerian models are acknowledged due to there problems with resolving

steep gradients over fixed meshes. Deterministic models, namely of the Eulerian, Gaussian,

and Lagrangian type can be used in concurrence with one another, for example, the Eulerian

model presented in [Ferragut] applies a Gaussian model to empirically determine the spatial

distribution of pollutants through finding the coefficient matrix values of turbulent diffusion.

Furthermore, the utilization of splitting techniques found in [Ferragut], [Mont], and [Pai]

vary in their specific uses. For instance, the article by Monforte uses splitting techniques to

separate the processes by which the pollutants are transported from the reactivity of the pol-

lutant species of interest in order compartmentalize the problem, whereas it is also observed

in [Ferragut] being used to split the transport equation into horizontal and vertical directions

with the vertical direction treated with the finite difference method and the horizontal with

adaptive finite element, the ultimate goal being to create simpler systems from those that

are more complicated and handle the variable time as an ordinary differential equation.

Mesh adaptivity is essential to the process of applying finite difference, finite volume,

and finite element methods to modeling air pollution while meeting constraints particular

to the specific conditions of the problem. Conditions vary in Although, Sanin and Montero

[Sanin] utilize the finite difference method due to its suitability for cubes, they recognize

that (FEM) is essential for meshes that are unstructured or require mesh adaptivity. Adap-

tivity is essential to the process of applying these methods to air pollution modeling while

meeting constraints particular to the specific problems. Adaptive methods reveal features
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that can remain undetected with the use of coarse meshes, and they are computationally

less intensive than applying a fine mesh over the entire domain. These adaptive techniques

allow for finer meshes to be used in conjunction with the coarse mesh and when the coarse

mesh and fine mesh overlap the coarse mesh is replaced by the finer one in order to obtain

a higher resolution solution while maintaining relative computational cost. The r-adaptive

and h-adaptive methods are well known adaptive techniques and are presented in Monforte’s

article [Mont]. The r-adaptive method changes the position of the nodal points that create

the basis for the mesh, whereas the h-adaptive method introduces new nodes where the error

is found to be higher than a given tolerance. The introduction of new nodal points in these

areas reduce the error, providing a higher resolution solution but at increased computational

time/cost.

(Fill out literature review with more references and background)
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2.3 Relevance

Mankind’s ability to model, predict and understand changes in our environment is es-

sential to the continuation and well-being of our respective societies. The applications of

pollution modeling are far-reaching, from modeling pollution concentrations in various river

systems and identifying their significant sources as in [Kach], [Klaychang], and [Meyer], to

modeling air quality and the atmospheric transport of pollutants from emission sources such

as for example the industrial smokestacks illustrated in [Pochai]. Organizations such as the

Environmental Protection Agency (EPA) use variations of the convection-diffusion model to

help predict the environmental impact of industrial emissions to pollution sensitive regions

such as national and state parks. These pollutant dispersion models help environmental

authorities employ regulations to stave off potential disasters, and provide real-time decision

support when severe environmental impacts occur. Many scholarly articles contain applica-

tions of the finite element method to solving complicated pollution dispersion models and

may be researched in order to gain a more robust comprehension of how to accurately il-

lustrate the physical processes/phenomena that dominate the convection-diffusion equation,

as well as other mass-transportation models used by environmental authorities and other

scientific organizations.

Moreover, software packages are constantly being created and redeveloped for tackling the

computational challenges of air pollution modeling, some specific packages include ADAM,

ASPEN, CALPUFF, and AERMOD, etc. These packages are often utilized to predict how

both meteorological phenomena and industrial emissions effect the dispersal of different

pollutant species over varying topography. As further advances in computer systems are

made, the methodologies for simulating pollutant distribution for photochemical/dispersion

models and applying them in real-world situations will drastically improve on both a micro

(local/regional/urban) and global (troposphere/atmospheric) scale.
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3 Modeling Convection-Diffusion

The main portion of this research consists of three subsections, the first of which covers

the definition of basic convection-diffusion, the diffusive coefficient, convection vector, source

emission, as well as different types of boundary conditions and their applications to various

topographies. The weak/variational formulation is defined in the second subsection, with its

derivation as well as existence and uniqueness shown. This segment also contains the basics

of the Finite Element Method in addition to the semi/fully-discrete formula. The final

subsection is composed of the basic elements of FreeFem++ and presents the simulations

modeling both pure diffusion, and convection-diffusion within a square finite space.

3.1 Basic Convection-Diffusion

The natural processes conveying the dispersion of particles and energy from areas of

high concentration to areas of low concentration are represented by the convection-diffusion

equation

Ut −5 � (D5 u)−5 � (~bu) = f on Ω× [0, T ] (1)

where the coefficient of diffusion D is a constant whose concentration gradient is assumed

to be proportional to the rate of diffusion, and the vector ~b represents the convection term

determining the trajectory of the concentrated particles emitted from the source f on the gen-

eralized domain Ω with boundary ∂Ω. This particular convection-diffusion model is limited

in its ability to accurately depict smoke plume dispersal due to the omission of other variables

and equations that are heavily relied upon in more renowned mass transportation models.

These omissions include voracity (the swirling phenomena observed in smoke plumes), the

stream function, and the reactionary properties of the particular chemical/pollutant species

being measured. However, this model still provides the basis for more technical convection-

diffusion dominated mass transportation equations often used in real-world applications.
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3.1.1 Boundary Conditions

Different types of boundary conditions are often used in conjunction with one another

when modeling partial differential equations such as the convection-diffusion equation for a

variety of reasons, one being to apply the properties of the topography specific to the problem.

The Neumann boundary condition, also referred to as the natural boundary condition, is

often used for problems related to convection-diffusion such as the heat equation. The

physical mechanics behind the Neumann boundary condition are associated with the freedom

of movement, so particles are allowed to pass through the boundary. Hence, the boundary

exerts no force specifying the flux or flow of particles in and out of the defined space. The

Neumann boundary condition is denoted as follows:

∂u

∂n
= g on ∂Ω (2)

Furthermore, the Dirichlet boundary condition or fixed boundary condition is often

used to force the particles near the boundary to go to zero, illustrating the reaction of a

particle distribution within a finite space that faces obstruction by a solid surface. The

Dirichlet boundary condition is denoted:

u = 0 on ∂Ω (3)

Applied air pollution models often use a combination of the previously mentioned

boundary conditions in the form of Robin boundary conditions or (mixed boundary condi-

tions) denoted as:
∂u

∂n
= g − au on ∂Ω (4)

This type of boundary makes physical sense when formulating applied convection-

diffusion models due to the flow of particles through a medium such as air (Neumann) and

no flow through obtrusive surfaces such as the ground, buildings or mountains (Dirichlet).

Thus, Robin boundary conditions provide the most precise representation for modeling the

physical environment of applied pollution dispersal problems due to its flexibility with regards

to the flux adhering to the topography of a given problem space.
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3.2 Weak Formulation

The weak formulation of a partial differential equation is an essential component to the

successful utilization of the finite element method and consists of an integral function con-

taining more conveniently solvable ordinary differential equations implicitly. In essence,

before its transformation into the weak form, the differential function has many condi-

tions/constraints that its solution must strictly adhere too, whereas, when the weak for-

mulation is implemented the conditions are less restrictive allowing for a more achievable

solution that still approximates the stronger differential function. The weak formulation for

the basic convection-diffusion equation employed in the simulation is represented by:∫
Ω

∂u

∂t
� v dx = a(u, v) ∀ u, v ε L2(0, T ;H1(Ω)) (5)

where all u and v belong to L2 from 0 to T and both L2 and H1(Ω) are multi-dimensional

Hilbert spaces defined as:

H1(Ω) = {v ε L2 :
∂v

∂xi
ε L2(Ω)}

and

L2(Ω) = {v : v is defined on Ω and

∫
Ω

v2 dx <∞}

Johnson claims in his book, “the formulation (V ) is said to be a weak formulation of (D)

and the solution of (V ) is said to be a weak solution of (D).” Where (V ) and (D) are defined

as:

(D) −4u = f in Ω

u = 0 on ∂Ω

and

(V ) Find u ε H1
0 (Ω) such that a(u, v) = (f, v) ∀v ε H1

0 (Ω)

Additionally, Johnson explains the mathematical advantage to the weak formulation (V)

is in its ability to prove the existence of its solutions with less difficulty than that of the
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differential function (D), furthermore noting that with regards to non-linear functions, a clas-

sical solution can be nearly unattainable when on the contrary there is higher likelihood of

finding a “sufficiently regular” weak solution that can approximate/model the same behavior.

3.2.1 Derivation of Weak Formulation

The derivation of the weak formula for the convection diffusion equation starts with

∂u

∂t
− div(D5 u) + div(~bu) = f ∀ x ε Ω, t ε [0, T ]

where v=v(x) is a smooth function and is multiplied throughout the equation in order to

obtain∫
Ω

(ut v +D5 u �5v −5 � (~b u) v) dx−
∫

Ω

fv dx = 0 ∀ v ε H1
0 (Ω, [0, T ]) on (c, u = 0)

and by Green’s first formula −
∫

Ω
D5 u �5v dx =

∫
Ω

(D5 u) �5v dx−
∫
∂Ω

∂u
∂n
v ds so that

through utilizing Neumann boundary conditions the equation is represented by:

If
∂u

∂n
= g on ∂Ω, then u ε H ′(Ω, [0, T ]) s.t∫

Ω

(ut v −D5 u �5v −5 � (~bu) v) dx−
∫

Ω

fv dx− D

∫
∂Ω

gv ds

likewise, Robin boundary conditions produce the equation:

If au+
∂u

∂n
= g on ∂Ω, then

∂u

∂n
= g − au s.t∫

Ω

(ut v +D5 u �5v +5 � (~bu) v) dx+D

∫
∂Ω

(au) v ds−
∫

Ω

fv dx− D

∫
∂Ω

gv ds

where u, v ε H1
0 (Ω, [0, T ]), the first derivatives of the Hilbert space H1 are integrable,

H1([0, T ]) and H1(Ω) are the weak time and spacial derivatives respectively.

Finally, employing ut ≈ u−uold

dt
yields the following weak formulation:∫

Ω

(uv +D5u � 5v+5�(~bu) v) dx + D

∫
∂Ω

(au) v ds −
∫

Ω

fv dx−D
∫
∂Ω

gv ds−
∫

Ω

uold � v dx

The resulting formulation is thereby translated into FreeFem++ programming language and

used to solve the convection-diffusion equation.
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3.2.2 Basics of Finite Element Method

One of the most prominent methods for approximating partial differential equation

solutions involving variable coefficients and irregular/adaptive meshes is the finite element

method. Finite element analysis is a relatively newer field in modern mathematics in com-

parison to its classically based counterpart, the finite difference method. The finite element

methods first introduction to the mathematical community transpired through engineers for

the structural engineering of frames/beams, the applications of FEM grew exponentially with

the emergence of computers during the 1960’s and 1970’s. Mathematicians began to explore

the use of these new variational methods to solve strenuous differentiable and integrable

functions common in both science and engineering, and they quickly discovered preexisting

roots of FEM from early twentieth century variational methods. Today, FEM is utilized

extensively in conjunction with computer aided systems for design and engineering, known

as (CAD or CAE) systems. Applications of FEM for convection-diffusion/reaction-diffusion

based pollution models is now standard practice for those in the field, and examples of the

FEM’s application to solving problems real-world data and scenarios are prevalent in the

literature mentioned in the previous chapter. The supporting substructure of FEM relies on

the construction of the spatial domain’s mesh and the FEM space Vh.
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3.2.3 Mesh of Spatial Domain

The mesh of the spatial domain consists of connected nodal points that subdivide the

partial differential equation into smaller components through which partitioning/triangulation

creates a finite number of more manageable “elements”. The model and simulations pre-

sented in this paper utilize a square mesh which is subdivided through the introduction of

triangular elements. Mesh adaptivity can provide more accurate approximations for solutions

containing higher spatial errors. Introducing new nodal points or modifying the location of

existing ones are two types of adaptive mesh methodologies, known as the h-adaptive and

r-adaptive methods respectively.

+(Triangulation/Partitioning with two added figures)

+(Details about mesh construction)

Figure 1: Simulation Mesh

3.2.4 Finite Element Method Space

In order to construct a finite element space, the domain Ω is subdivided into a finite

number of geometric representations/elements, namely triangles or rectangles, the finite

element space is inevitably a subspace of the Hilbert space H1. Moreover, the property of

smoothness (infinite continuity over the domain Ω) is required for a function to have the

proper suitability for finite elements to subdivide the domain.
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3.2.5 Semi-Discrete Form

Semi-discrete formulations are the middle step for obtaining an equations fully discrete

form. We seek to find:

u(t, x) ε L2(0, T ;H1(Ω)) s.t

∫
Ω

ut(t, x) v(x) dx = a(u, v) ∀ v ε H1(Ω) and ∀ t ε [o, T ]

where u(0, x) = u0(x)

Since V ⊆H1(Ω), we can then construct a semi-discrete problem with a discretized spatial

coordinate. We would like:

u(t, x)ε L2(0, T ;V ) s.t

∫
Ω

ut(t, x)v dx = a(u, v) ∀ v ε V and ∀ t ε [0, T ]

where u(0, x) = ũ0(x) and ũo is an interpolant of u0 ε V

Therefore, the semi-discrete formulation for the basic convection-diffusion equation is

denoted: ∫
Ω

∂u

∂t
v dx = a(u, v) ∀ u, v ε L2(0, T ;V ) (6)

3.2.6 Fully-Discrete Form

The fully-discrete form utilizes the semi-discrete form in order to discretize the time

component by replacing ∂u
∂t

with the difference un+1−un

n
. Hence, the fully-discrete formulation

is denoted:∫
Ω

(
un+1 − un

h
� v) dx = a(un, v) where {un}∞n=1, v ε V and u0 = ũ0(x) ∀ n = 0, 1, 2, ..., N

(7)
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3.2.7 Matrix Equations∫
un+1 � v dx =

∫
un � v dx+ ha(un, v) dx

un =
N∑
i=1

ci,nφi(x)

~cn+1 = ~cn + hA~cn

aij = a(φj, φi)

3.3 Testing and Analysis

The final section of the main body of research presents the foundational basis of the

software program FreeFem++ and the process/methodologies employed in order to achieve

the simulations subsequently illustrated while also providing a physical description of the

simulation results.

3.3.1 FreeFem++

The development of FreeFem++ hinged on its initial development as MacFem and

PCFem through the programming language Pascal, and later recompilations in C and C++

that resulted in both FreeFem and FreeFem+ respectively. Eventually yet another recompi-

lation in C++ created the current maintained/working version of the program FreeFem++.

FreeFem++ is a high-level programming language which condenses the amount of source

code for solving a partial differential equation numerically via the finite element methods

from several hundreds of lines to a more manageable code length. The language for the

input of the partial differential equations is similar to that of their defined mathematical

representations. FreeFem++ has a basic infrastructure consisting of an elliptic partial dif-

ferential equation solver ”solve”, a module for convection appropriately named ”convect”,

and likewise has the ability to refine solutions through various types of mesh adaptivity.
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Moreover, FreeFem++ utilizes the weak formulations previously described in the aforemen-

tioned subsection titled Weak Formulations, in order to remove the constraints surrounding

the required twice differentiability of the integrand as well as the infinite continuity obliga-

tory of the function.

Source code to solve the convection-diffusion equation through FreeFem++ is first created

by introducing the parameters, defining the mesh and finite element space for the proposed

problem, and then the equation is subsequently defined using the specified boundary con-

ditions and FreeFem++’s input language. Finally, the re-iteration process is created to

display particle movement with respect to time through the use of time-stepping techniques

and for my simulation postscript files are produced to capture the images at each individual

time-step and appropriately name and store the respective files.

3.3.2 Simulations

Dirichlet boundary conditions are used in the first depicted simulation. The concen-

tration of pollutant/particle specie is constantly emitted from a singular source near the

upper-right center of the square mesh and disperses through the processes of both diffusion

and circular convection. The simulation begins with a relatively small concentration of par-

ticles from the emission source and as time progresses the concentration rapidly increases

due to the constant discharge of particles from the emission source. Furthermore, the area of

this particle concentration expands due to its constant diffusion rate throughout the square

finite space. The convection process rotates the area of concentration in a circular clockwise

direction around the space while through the diffusive term D, the area of high particle con-

centrations spreads to that of the lower concentration levels and can be visually observed by

the increased green coloring (low concentration) representing the plume’s gradient. Towards

the end of the simulation the area of the highest particle concentration is near the center of

the mesh and the plume’s low concentration gradient nearly fills up the entire space over the

mesh. Hence, the simulation represents the dispersion of particles continually emitted from

a singular source over a finite space through the processes of both circular convection and

15



constant diffusion.

Figure 2: Initial time-step

IsoValue
-0.0334509
0.0167254
0.0501763
0.0836271
0.117078
0.150529
0.18398
0.217431
0.250881
0.284332
0.317783
0.351234
0.384685
0.418136
0.451587
0.485037
0.518488
0.551939
0.58539
0.669017

Figure 3: Time-step 5 of 79

IsoValue
-0.0101813
0.00509064
0.0152719
0.0254532
0.0356345
0.0458158
0.055997
0.0661783
0.0763596
0.0865409
0.0967222
0.106903
0.117085
0.127266
0.137447
0.147629
0.15781
0.167991
0.178172
0.203626

Figure 4: Time-step 15 of 79

IsoValue
-0.00395115
0.00197557
0.00592672
0.00987786
0.013829
0.0177802
0.0217313
0.0256824
0.0296336
0.0335847
0.0375359
0.041487
0.0454382
0.0493893
0.0533405
0.0572916
0.0612428
0.0651939
0.069145
0.0790229

Figure 5: Time-step 25 of 79

IsoValue
-0.00237049
0.00118525
0.00355574
0.00592623
0.00829672
0.0106672
0.0130377
0.0154082
0.0177787
0.0201492
0.0225197
0.0248902
0.0272606
0.0296311
0.0320016
0.0343721
0.0367426
0.0391131
0.0414836
0.0474098
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Figure 6: Time-step 35 of 79

IsoValue
-0.00162921
0.000814603
0.00244381
0.00407301
0.00570222
0.00733142
0.00896063
0.0105898
0.012219
0.0138482
0.0154775
0.0171067
0.0187359
0.0203651
0.0219943
0.0236235
0.0252527
0.0268819
0.0285111
0.0325841

Figure 7: Time-step 45 of 79

IsoValue
-0.00119338
0.00059669
0.00179007
0.00298345
0.00417683
0.00537021
0.00656359
0.00775698
0.00895036
0.0101437
0.0113371
0.0125305
0.0137239
0.0149173
0.0161106
0.017304
0.0184974
0.0196908
0.0208842
0.0238676

Figure 8: Time-step 55 of 79

IsoValue
-0.000905789
0.000452895
0.00135868
0.00226447
0.00317026
0.00407605
0.00498184
0.00588763
0.00679342
0.00769921
0.008605
0.00951079
0.0104166
0.0113224
0.0122282
0.0131339
0.0140397
0.0149455
0.0158513
0.0181158

Figure 9: Time-step 75 of 79

IsoValue
-0.000553016
0.000276508
0.000829524
0.00138254
0.00193556
0.00248857
0.00304159
0.0035946
0.00414762
0.00470064
0.00525365
0.00580667
0.00635968
0.0069127
0.00746572
0.00801873
0.00857175
0.00912476
0.00967778
0.0110603
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4 Suggestions for Future Study

Suggestions for future study on this topic include improving upon the model by compound-

ing the models basic foundation with variables such as voracity, stream-functions, and re-

actionary properties to create more realistic models of mass-transportation and complex

advection phenomena. To create better models more accurately portraying the physical

movement of air particles, the study of fluid dynamics is essential and should be researched

extensively. Furthermore, the potential inclusion of stochasticity (random behavior) to the

convection-diffusion equation greatly expands its capabilities for applied usage in the field of

pollution modeling due to the atmospheric conditions often unpredictable behavior. Finally,

new numerical methods could be employed in order to test for better quality solutions, and

included mesh adaptively can play an important role for finding higher resolution solutions

to more complicated convection-diffusion based models with lower computational intensity,

thus reducing the overall time/cost of the methods operations.

18



5 Bibliography

References

[1] Benarie, Michael M. Urban air pollution modelling. n.p.: Cambridge, Mass. : MIT Press,

c1980., 1980.

[2] Betounes, David. Partial differential equations for computational science: with Maple

and Vector Analysis. n.p.: New York : TELOS, c1998., 1998.

[3] Carmichael, G.R., T. Kitada, and L.K. Peters. ”Application of a Galerkin finite element

method to atmospheric transport problems.” Computers And Fluids 8, no. Special Is-

sue: Computational Methods in Nonlinear Fluid Mechanics (January 1, 1980): 155-176.

ScienceDirect, EBSCOhost (accessed February 11, 2017).

[4] Ferragut, L., et al. ”An efficient algorithm for solving a multi-layer convection-diffusion

problem applied to air pollution problems.” Advances In Engineering Software (2013):

191. Academic OneFile, EBSCOhost (accessed February 5, 2017).

[5] Gockenbach, Mark S. Partial differential equations: analytical and numerical methods.

n.p.: Philadelphia : Society for Industrial and Applied Mathematics, c2011., 2011.

[6] Kachiashvili, K., et al. ”Modeling and simulation of pollutants transport in rivers.” Ap-

plied Mathematical Modelling no. 7 (2007): 1371. Academic OneFile, EBSCOhost

(accessed February 2, 2017).

[7] Klaychang, Witsarut, and Nopparat Pochai. ”A numerical treatment of a non-

dimensional form of a water quality model in the Rama-nine reservoir.” Journal Of

Interdisciplinary Mathematics 18, no. 4 (August 2015): 375. Publisher Provided Full

Text Searching File, EBSCOhost (accessed February 15, 2017).

[8] LeVeque, Randall J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cam-

bridge University Press, 2002.

19



[9] Meyer, JoaO Frederico C.A., and Geraldo L. Diniz. ”Pollutant dispersion in wetland

systems: Mathematical modelling and numerical simulation.” Ecological Modelling no.

3-4 (2007): 360.

[10] Monforte, Lluis, and Agusti Perez-Foguet. ”A multimesh adaptive scheme for air quality

modeling with the finite element method.” International Journal For Numerical Methods

In Fluids no. 6 (2014): 387. Academic OneFile, EBSCOhost (accessed February 11, 2017).

[11] Pai, Prasad, and T. H. Tsang. ”A finite element solution to turbulent diffusion in a

convective boundary layer.” International Journal For Numerical Methods In Fluids 12,

no. 2 (January 20, 1991): 179. Publisher Provided Full Text Searching File, EBSCOhost

(accessed February 11, 2017)

[12] Pochai, Nopparat. “A finite element solution of the mathematical model for smoke

dispersion from two sources.” International Journal of Mathematical, Computational,

Physical, Electrical and Computer Engineering 5, (November 12, 2011).

[13] Sanin, N., and G. Montero. ”A finite difference model for air pollution simulation.”

Advances In Engineering Software no. 6 (2007): 358. Academic OneFile, EBSCOhost

(accessed February 9, 2017).

[14] Steele, Jeffrey M. Applied finite element modeling : practical problem solving for engi-

neers. n.p.: New York : M. Dekker, c1989., 1989

[15] Tyn Myint, U., and Lokenath Debnath. Linear partial differential equations for scien-

tists and engineers. n.p.: Boston : Birkhäuser, c2007., 2007.
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